

A Nonclassical Dihydrogen Adduct of $S = \frac{1}{2}$ Fe(I)

Yunho Lee,^{+,§,||} R. Adam Kinney,^{+,||} Brian M. Hoffman,^{*,†} and Jonas C. Peters^{*,†}

[†]Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States ^{*}Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States

S Supporting Information

ABSTRACT: We have exploited the capacity of the "(SiP^{iPr}₃)Fe(I)" scaffold to accommodate additional axial ligands and characterized the mononuclear $S = \frac{1}{2} H_2$ adduct complex $(SiP^{iPr}_3)Fe^{I}(H_2)$. EPR and ENDOR data, in the context of X-ray structural results, revealed that this complex provides a highly unusual example of an open-shell metal complex that binds dihydrogen as a ligand. The H₂ ligand at 2 K dynamically reorients within the ligand-binding pocket, tunneling among the energy minima created by strong interactions with the three Fe–P bonds.

ow-valent iron has been proposed to play a prominent role in Lithe function of hydrogenase and nitrogenase enzymes, a hypothesis that has inspired the study of formally low-valent iron model complexes that afford access to N_2 and H_2 ligation.^{1–3} Whereas model systems have historically focused on Fe(0) and Fe(II) systems in this context, the coordination chemistry of Fe(I) has more recently come into focus.⁴ This is in part due to its suggested intermediacy in enzymatic hydrogenase activity. Fe(I) is a key formal oxidation state to consider for N₂ and H⁺ reduction cycles, and understanding interactions between Fe(I) and N_2/H_2 is essential.

In several recent studies using a tripodal tetradenate tris-(phosphino)silyl ligand XL₃ (e.g., $SiP^{iPr}_{3} = [Si(o-C_6H_4P (Pr_2)_3$]⁻),^{3b,4} it has been established that five-coordinate iron in a trigonal-bipyramidal (TBP) geometry (XL₃Fe-L') can accommodate a terminally bonded N_2 (or CO) ligand in the axial site across three formal oxidation states $(XL_3Fe^0-N_2^{-1})$ $XL_3Fe^{I}-N_2$, and $XL_3Fe^{II}-N_2^+$). It is noteworthy that the spin states of these TBP systems vary such that an S = 0 state is favored for Fe(0), an $S = \frac{1}{2}$ state for Fe(I), and an S = 1 state for Fe(II). These findings encouraged us to explore the affinity of dihydrogen for the axial site, particularly for the $S = \frac{1}{2}$ Fe(I) or S = 1Fe(II) states. Whereas it is common for H_2 to occupy the same coordination site as N2, thoroughly characterized dihydrogen adducts of open-shell complexes for transition metals remain exceptionally rare.^{5,6} Oxidative addition to form a dihydride and heterolytic cleavage to form a monohydride are well-established alternatives. NMR techniques, including measurement of T_1 values and $J_{\rm HD}$ coupling constants, have been the methods of choice for characterizing closed-shell H₂ adducts and distinguishing between the dihydrogen/dihydride extrema on the H₂ bonding continuum.⁷ Open-shell H₂ adduct complexes are not amenable to this approach because of the extreme line broadening of resonances expected for H atoms directly coordinated to a metal center with spin S > 0. Because the $S = \frac{1}{2}$ state is EPRactive, we reasoned that a combined electron paramagnetic

Scheme 1

resonance (EPR)/electron-nuclear double resonance (ENDOR) study might prove most effective in characterizing the product formed by reaction of H₂ with the $S = \frac{1}{2}$ Fe(I) complex. The present report provides the results of such a study and introduces an $S = \frac{1}{2} \text{Fe}^{1}(\text{H}_{2})$ adduct complex. Evidence for its related but cationic S = 1 Fe^{II}(H₂)⁺ analogue is also provided.

As previously reported, treatment of the methyl complex $(\text{SiP}^{i\text{Pr}_{3}})\text{Fe}-\text{CH}_{3}(1)$ with HCl followed by reduction generates the $S = 1/2 \text{ Fe}(I) - N_2$ adduct $(\text{SiP}^{i\text{Pr}_{3}})\text{Fe}(N_2)(2)$.^{4a,b} The N_2 ligand is sufficiently labile to be displaced by H₂ in benzene to afford a yellow species formulated as S = 1/2 "(SiP^{*i*Pr}₃)Fe(H₂)" or "(SiP^{iPr}₃)Fe(H)₂" (3) ($\mu_{eff} = 1.9 \ \mu_B$ by the Evans method; Scheme 1) in nearly quantitative yield. The optical spectrum of 3 [see the Supporting Information (SI)] features a low-energy d-d transition at 1350 nm ($\varepsilon \approx 100 \text{ cm}^{-1} \text{ M}^{-1}$) similar to that of **2** (1250 nm, $\varepsilon \approx 300 \text{ cm}^{-1} \text{ M}^{-1}$).

Displacement of the N_2 ligand of 2 by H_2 can be conveniently monitored by ¹H NMR spectroscopy in C_6D_6 (Figure 1). As shown in Figure 1, the H_2 adduct 3 is stable to vacuum over prolonged periods (even at 60 °C over 12 h) but converts back to 2 upon exposure to N_{2} , which would be consistent with an associative exchange process proceeding through a formally 19electron intermediate. Alternatively, and perhaps more likely, is a process wherein a labile phosphine donor exposes a site for N2 binding via a 15-electron intermediate, followed by H₂ loss and recoordination of the phosphine donor to provide 2. We also prepared and similarly characterized the D_2 derivative of 3 (see the SI). The ¹H NMR spectrum of $3-D_2$ is analogous to that for 3, and an ²H NMR spectrum does not reveal any deuterium resonances for 3-D₂ (see the SI). This fact is consistent with deuterons that are directly bonded to an $S = \frac{1}{2}$ iron center.

July 26, 2011 Received: Published: September 28, 2011

Figure 1. ¹H NMR spectra of (A) $(SiP^{iPr}_{3})Fe(N_2)$ (2), (B) $(SiP^{iPr}_{3})-Fe(H_2)$ (3), (C) 3 under full vacuum, and (D) a mixture of 2 and 3 measured in C_6D_6 at RT.

Incubation of 2 under HD instead of H_2 at RT for 15 h caused no $HD/H_2/D_2$ scrambling, suggesting that 3 binds an intact H_2 ligand rather than undergoing heterolytic activation (e.g., to generate a Si-H or P-H bond and an Fe-H bond).

The well-behaved NMR properties of **2** and **3** allow for the direct measurement of the equilibrium constant for H_2/N_2 exchange at the S = 1/2 Fe center. Using sealed J-Young vessels with known N_2/H_2 gas mixtures and exploiting the well-defined resonances of the SiP^{*i*Pr}₃ ligand at ca. 10 and 8 ppm to integrate the respective concentrations of **2** and **3**, we estimated the equilibrium constant to be 50 ± 20 in favor of H_2 binding in C_6D_6 at room temperature.

X-ray structures of **3** were obtained from crystals under vacuum and under an atmosphere of H₂. While both structures are of high quality, neither shows the positions of the H₂/ hydride. Nonetheless, it is clear that the two structures are essentially identical and are likewise very similar to that of the N₂ adduct complex **2**^{4b} and its CO congener (SiP^{*i*Pr}₃)Fe^I(CO)^{4c} (Figure 2 and Table 1), except for the absence of an axially bound diatomic ligand for **3**. We were unable to locate a vibration consistent with either an Fe–H or an Fe–(H–H) motif. Whereas terminal M–H vibrations are readily assigned, ν -(H–H) vibrations for H₂ adduct complexes are not as reliably discerned.^{6a,7} The absence of ν (Si–H) or ν (P–H) stretches in the IR spectrum is likewise inconsistent with heterolytic generation of Fe–H and Si–H/P–H bonds but consistent with an intact H₂ ligand.

We examined the EPR spectrum of **3** in both the solid state and as a frozen glass. Treatment of **2** ($\mathbf{g} = [2.364, 2.036, 2.003]$) with H₂ gas leads to complete loss of the starting material and the appearance of **3** with an $S = \frac{1}{2}$ EPR signal ($\mathbf{g} = [2.275, 2.064, 2.015]$), as measured for frozen solutions (9:1 THF/Me-THF) and pure powders (see the SI). The unique magnetic direction \mathbf{g}_1 ($\mathbf{g}_1 = 2.275$) is assigned to the pseudo- C_3 symmetry axis of the molecule. These low-temperature measurements of **3**, combined with NMR Evans method (Table 1) show that the coordination sphere and low-spin d⁷ character of the Fe(I) center are maintained under all conditions.

The *g* values of **3** (and **2**) can be described in terms of a "pseudo-Jahn–Teller" (PJT) effect wherein spin–orbit coupling competes with vibronic coupling to lower the energy of the molecule by a distortion from a C_3 -symmetric structure." The idealized trigonal Fe(I) geometry created by the $[SiP^{iPr}_3]^-$ ligand leads to a doubly

Figure 2. (A) Displacement ellipsoid (50%) representation of 3 obtained from a crystal grown under a H_2 atmosphere. H atoms of SiP^{IPr}₃ have been omitted for clarity. (B) Overlay of the closely related core structures of 2 (blue) and 3 (red).

Table 1. Selected Data for Complexes Discussed in the Text

complex	$d_{\mathrm{Fe-Si}}\left(\mathrm{\AA}\right)$	$d_{\mathrm{Fe-P}}\left(\mathrm{\AA}\right)$	$\angle PFeP (deg)$	$\mu_{\mathrm{eff}} \left(\mu_{\mathrm{B}} \right)^{a}$
Fe(N ₂) 2	2.2713(6)	2.2657(5)	111.82(2)	1.90
		2.2841(7)	113.59(2)	
		2.3244(6)	128.64(2)	
$Fe(H_2) 3^b$	2.254(1)	2.2442(9)	113.31(3)	1.88
		2.260(1)	118.07(3)	
		2.2631(9)	122.36(4)	
$Fe(H_2) 3^c$	2.2478(3)	2.2418(3)	113.157(9)	
		2.2577(3)	117.63(1)	
		2.2613(2)	123.16(1)	

 a Magnetic moments by the Evans method in C_6D_6 at 22 °C. b Under vacuum. c Under $H_2.$

degenerate ²E ground state in which the $(d_{xyy}, d_{x^2-y^2})$ orbital doublet is triply occupied, and therefore, the complex is subject to a JT distortion. The most obvious distortion in the X-ray structure of **3** (and **2**) is in the P–Fe–P angles, with an increase in one angle from the symmetric value of 120° and a decrease in the other two (e.g., for **3**, P2–Fe–P3 = 123.2° and P1–Fe–P3 \approx P1–Fe–P2 \approx 115.4°).

Although the hydrogenic ligand of 3 is not visible by X-ray diffraction (XRD), we directly characterized this ligand by ^{1,2}H ENDOR spectroscopy. Figure 3 displays a part of the 2D fieldfrequency ¹H ENDOR pattern comprising spectra collected across the EPR envelope of **3**. The spectrum collected at g_3 shows a doublet centered at the ¹H Larmor frequency that is split by the hyperfine interaction $|A_3(^1H)| = 37.8$ MHz. The equivalent ²H ENDOR spectrum from $[SiP^{iPr}_{3}]Fe(^{2}H_{2})$ (3') shows a corresponding doublet; its splitting, $|A_3(^2H)| = 5.6$ MHz, matches that of the ¹H doublet upon scaling by the respective nuclear g values with a small isotope-effect correction. Likewise, the 2D field-frequency pattern of the ²H ENDOR spectra corresponds to the ¹H pattern of Figure 3 (see the SI). The complete 2D pattern is exceptionally well simulated by hyperfine coupling to a *single type* of ¹H, with coupling tensor $\mathbf{A} = +[2.3, -40.6, -37.8]$ MHz, isotropic coupling $a_{iso} =$ -25.4 MHz, and anisotropic dipolar hyperfine coupling tensor T = +[27.7, -15.2, -12.4] MHz; the tensor orientation relative to g is given by the rotation angles $(\alpha, \beta, \gamma) = (0, 6, 0)$. The absolute sign of the ^{1,2}H hyperfine coupling was determined experimentally using the PESTRE technique (see the SI).9

The simplest chemical species compatible with a single type of interacting ¹H whose $Fe^{-1}H$ vector lies close to g_1 is a neutral

Figure 3. Q-band stochastic 2D field—frequency continuous-wave ENDOR pattern for 3 (black) with simulations of the exogenous "H₂" ¹H ENDOR response (red; see the text for details). The corresponding ²H ENDOR spectrum collected from 3-D₂ at $g_3 = 2.015$ (blue) is scaled by the ratio of the ¹H and ²H nuclear *g* values. ENDOR responses from ³¹P of the [SiP^{iPr}₃]⁻ ligand are indicated by (*).

complex in which a terminal hydride bound to Fe(I) is generated by heterolytic cleavage of the H₂ molecule with delivery of the proton to the Si of the SiP^{*i*Pr}₃ ligand. However, this model requires cleavage of the Fe–Si bond with rearrangement of the geometry at Si and a substantial increase in d_{Fe-Si} relative to 2, whereas the crystal structure of 3 reveals a negligible change in d_{Fe-Si} relative to 2 (see above).¹⁰ This conclusion was corroborated by EPR measurements showing that the solution, polycrystalline powder (see the SI), and single-crystal forms of 3 have the same g tensor¹¹ and thus the same structure. The ENDOR pattern of Figure 3 must therefore arise from a neutral complex that has been generated by the *addition* of H₂, either in the form of an Fe(I)–H₂ complex or via oxidative addition to an Fe(III) dihydride.

The observed *g* values provide a powerful argument against the formulation of **3** as an Fe(III) dihydride. The PJT effect predicts that the *g* values for an Fe(III) d^5 ion must be less than $g_e = 2$, contrary to observation.¹²

Elimination of the Fe(III) dihydride model for **3** was confirmed by analysis of the ¹H ENDOR results. The 2D ENDOR pattern for **3** can be compared with that predicted for this species on the basis of a consensus geometry of similar complexes ($d_{\rm H-H} > 1.6$ Å; $d_{\rm Fe-H} = 1.54$ Å; Figure 4).¹³ The critical parameter in the ENDOR simulations is the value of the angle β between the g_1 principal axis and the Fe–H vectors. In an Fe(III) dihydride complex, $\beta \geq 30^{\circ}$. ¹H ENDOR simulations using $\beta \approx 30^{\circ}$ (Figure 4B, $\beta = 30^{\circ}$; also see the SI) showed this to be incompatible with experiment. Figure 4B illustrates this with simulations for a spectrum collected at a field where each component of the doublet observed at g_3 (and g_2) in Figure 3 is split into an intense peak and a less intense "shoulder". The splitting for $\beta \approx 30^{\circ}$ is far larger than seen experimentally.

Rejection of the assignment of **3** as an Fe(I) monohydride or an Fe(III) dihydride implies by elimination that **3** is an Fe(I) $-H_2$ adduct. The similarity of the solution NMR and UV-vis data for **2** and **3** are also highly consistent with this notion (see above). The ENDOR simulations further show that even at 2 K, the H₂ of the Fe(I) $-H_2$ adduct undergoes dynamic reorientation within the ligand-binding pocket of **3**. In a consensus geometry for the

Figure 4. Simulations of ¹H ENDOR spectra for models of 3, for the spectrum at g = 2.146. The simulations are based on the hyperfine tensor determined through a fit to the 2D field—frequency plot of Figure 3 ($\mathbf{A} = [2.3, -40.6, -37.8]$ MHz) but with the dipolar interaction rotated by the angle β between the H nuclei and the g_1 axis, which is taken to lie along the Fe–Si bond (labeled as "g₁").

Fe(I)-H₂ center ($d_{\rm H-H}$ = 0.85 Å; $d_{\rm Fe-H}$ = 1.62 Å),¹⁴ the H atoms would exhibit a geometrically determined β value of ~15°. As shown in Figure 4 (also see the SI), the 2D ENDOR pattern of Figure 3 cannot be described by such a static structure. The electron-nuclear dipolar interaction for H₂ must therefore be modulated by rapid reorientation of H₂ about the Fe-H₂ bond axis.

The H₂ cannot undergo rotation that is only weakly hindered by the binding pocket environment because in that case the ground state would correspond to the free-rotor ground rotational state (m = 0).¹⁵ The total wave function of a rotating ¹H₂ must be antisymmetric with respect to exchange of the two ¹H nuclei. For ¹H₂ bound to the Fe(I) center of a statically distorted 3, this wave function is the product of the ¹H₂ rotational and spin functions. The rotor ground state is symmetric with respect to exchange of the two H nuclei (the "para" state) and thus must be associated with the antisymmetric *I* = 0 total nuclear spin state, which cannot exhibit a ¹H ENDOR signal.¹⁶ If 3 instead undergoes a dynamic PJT distortion, the total H₂ wave function would have the vibronic electron—nuclear wave function as an additional factor. For 3 this factor is symmetric with respect to exchange, so the conclusion remains.

Instead, the measurements are probably best understood as a consequence of H_2 tunneling among localized states set up by a strong sixfold barrier associated with rotation of the "dumbell-shaped" H_2 within the threefold-symmetric molecular potential (Figure 5).⁵ In this limit, the ¹H ENDOR response is allowed, and tunneling would average the dipolar interaction, causing the unique hyperfine axis to lie along the axis of rotation. We attribute the nonzero β to tensor noncollinearity caused by the distortion from trigonal symmetry that is introduced by the PJT effect and observed in the X-ray structure (Table 1).

It is of interest to compare the stable $(SiP^{iPr}_{3})Fe^{I}(H_{2})$ complex described here to that assigned as a dihydrogen adduct of Mo(III), "[HIPTN_3N]Mo^{III}(H_2)".^{6b} In a recent report, it was shown that the latter species undergoes facile heterolytic cleavage of H₂,

Figure 5. Schematic representation of H_2 hopping/tunneling on the potential energy surface for PJT-distorted 3.

delivering H⁻ to Mo to afford [[HIPTN₃N]Mo^{III}(H)]⁻ and H⁺, with the H⁺ presumably delivered to sacrificial [HIPTN₃N]³⁻ at reduced temperature.^{6c} In contrast, the Si atom of the $(SiP^{iPr}_{3})Fe$ scaffold is insufficiently basic to accept H⁺ from the coordinated H_2 , thus stabilizing the H_2 adduct complex 3 against heterolytic cleavage. The stability of H₂ bound to the "(SiP^{iPr}₃)Fe" scaffold also extends to its corresponding cation, "(SiP^{iPr}₃)Fe⁺". Treating previously reported $S = 1 \{(SiP^{iPr}_{3})Fe(N_{2})\}\{BAr^{F}_{4}\} (4) \text{ with } H_{2}$ reversibly generates what we have assigned as the S = 1 complex $\{(SiP^{iPr}_{3})Fe(H_2)\}\{BAr^{F}_{4}\}$ (5) (Scheme 1). Complex 5 is EPR/ ENDOR-silent because of its integer-spin triplet state, but solution NMR and UV-vis data (see the SI) provide evidence for a species that is highly similar to the cationic N2 adduct 4. Moreover, addition of an exogenous base (e.g., N'Pr₂Et) to 5 under N₂ cleanly effects heterolytic cleavage, affording the neutral Fe(II) complex $(SiP^{iPr}_{3})Fe(N_{2})(H)$ (6) (Scheme 1).

In summary, the mononuclear S = 1/2 Fe^I(H₂) adduct complex 3 provides a highly unusual example of a well-characterized openshell metal complex that binds dihydrogen as a ligand. Combined XRD, EPR, and ENDOR data are consistent with a PJT-distorted d^7 configuration and a H₂ ligand that at 2 K tunnels among the energetic minima created by the Fe–P bonds. The S = 1/2 title complex (SiP^{iPr}₃)Fe(H₂) can be formally oxidized to its S = 1cation, {(SiP^{iPr}₃)Fe(H₂)}⁺, and the latter species binds H₂ as an intact ligand that is subject to heterolytic cleavage upon addition of exogenous base.

ASSOCIATED CONTENT

Supporting Information. Experimental procedures, characterization and crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

bmh@northwestern.edu; jpeters@caltech.edu

Present Addresses

⁸Department of Chemistry, School of Molecular Science, Korea Advanced Institute of Science and Technology, Daejon, Republic of Korea.

Author Contributions

[®]These authors contributed equally.

ACKNOWLEDGMENT

We acknowledge the NIH (GM-070757 to J.C.P.; HL 13531 to B.M.H.). We thank Prof. Harden McConnell for insightful

suggestions about low-temperature dynamics. Dr. Peter Müller provided assistance with XRD analyses. Professor George R. Rossman provided access to a near-IR spectrometer. Henry Fong probed the deprotonation of **5**.

REFERENCES

(1) (a) Tard, C.; Pickett, C. J. Chem. Rev. 2009, 109, 2245. (b) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38, 100. (c) Vincent, K. A.; Parkin, A.; Armstrong, F. A. Chem. Rev. 2007, 107, 4366.

(2) (a) Smith, J. M.; Lachiotte, R. J.; Pittard, K. A.; Cundari, T. R.; Rodgers, K. R.; Lukat-Rodgers, G.; Lachiotte, R. J.; Flaschenriem, C. J.; Vela, J.; Holland, P. L. *J. Am. Chem. Soc.* **2006**, *123*, 756. (b) Holland, P. L. *Can. J. Chem.* **2005**, *83*, 296.

(3) (a) Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2004, 126, 6252.
(b) Mankad, N. P.; Whited, M. T.; Peters, J. C. Angew. Chem., Int. Ed. 2007, 46, 5768. (c) Brown, S. D.; Betley, T. A.; Peters, J. C. J. Am. Chem. Soc. 2003, 125, 322.

(4) (a) Lee, Y.; Mankad, N. P.; Peters, J. C. Nat. Chem. 2010, 2, 558.
(b) Whited, M. T.; Mankad, N. P.; Lee, Y.; Oblad, P. F.; Peters, J. C. Inorg. Chem. 2009, 48, 2507. (c) Lee, Y.; Peters, J. C. J. Am. Chem. Soc. 2011, 133, 4438.

(5) Kubas, G. J. Chem. Rev. 2007, 107, 4152.

(6) For the few cases where H₂ has been suggested to be coordinated to an open-shell metal center, see: (a) Hetterscheid, D. G. H.; Hanna, B. S.; Schrock, R. R. *Inorg. Chem.* 2009, 48, 8569. (b) Kinney, R. A.; Hetterscheid, D. G. H.; Schrock, R. R.; Hoffman, B. M. *Inorg. Chem.* 2010, 49, 704. (c) Bart, S. C.; Lobkovsky, E.; Chirik, P. J. *J. Am. Chem. Soc.* 2004, 126, 13794. (d) Baya, M.; Houghton, J.; Daran, J.-C.; Poli, R.; Male, L.; Albinati, A.; Gutman, M. *Chem.—Eur. J.* 2007, 13, 5347.

(7) (a) Heinekey, D. M.; Lledós, A.; Lluch, J. Chem. Soc. Rev. 2004,
33, 175. (b) Jessop, P. G.; Morris, R. H. Coord. Chem. Rev. 1992,
121, 155. (c) Morris, R. H. Coord. Chem. Rev. 2008, 252, 2381.

(8) (a) Bersuker, I. B. *The Jahn-Teller Effect*, 1st ed.; Cambridge University Press: Cambridge, U.K., 2006; (b) McNaughton, R. L.; Roemelt, M.; Chin, J. M.; Schrock, R. R.; Neese, F.; Hoffman, B. M. *J. Am. Chem. Soc.* **2010**, *132*, 8645.

(9) Doan, P. E. J. Magn. Reson. 2011, 208, 76.

(10) DFT calculations showed that an isomer with one H atom on Si and on Fe, $(HSiP^{iPr}_{3})Fe(H)$, is energetically inaccessible relative to $(SiP^{iPr}_{3})Fe(H_2)$ or $(SiP^{iPr}_{3})Fe(H_2)$ isomer.

(11) Gurbiel, R. J.; Bolin, J. T.; Ronco, A. E.; Mortenson, L.; Hoffman, B. M. J. Magn. Reson. **1991**, 91, 227.

(12) Ammeter, J. H. J. Magn. Reson. 1978, 30, 299.

(13) Cambridge Structural Database (CSD).

(14) Bruno, I. J.; Cole, J. C.; Edgington, P. R.; Kessler, M.; Macrae, C. F.; McCabe, P.; Pearson, J.; Taylor, R. *Acta Crystallogr.* **2002**, *B58*, 389.

(15) McConnell, H. M. J. Chem. Phys. 1958, 29, 1422.

(16) Eckert, J.; Kubas, G. J. J. Phys. Chem. 1993, 97, 2378.